Plasticity in extended phenotypes: orb web architectural responses to variations in prey parameters.

نویسنده

  • Sean J Blamires
چکیده

A spider orb web is an extended phenotype; it modifies and interacts with the environment, influencing spider physiology. Orb webs are plastic, responding to variations in prey parameters. Studies attempting to understand how nutrients influence spider orb-web plasticity have been hampered by the inability to decouple prey nutrients from other, highly correlated, prey factors and the intrinsic link between prey protein and prey energy concentration. I analyzed the nutrient concentrations of cockroaches, and adult and juvenile crickets to devise experiments that controlled prey protein concentration while varying prey size, ingested mass, energy concentration and feeding frequency of the orb web spider Argiope keyserlingi. I found that A. keyserlingi alters overall architecture according to feeding frequency. Decoration length was inversely related to ingested prey mass and/or energy density in one experiment but directly related to ingested prey mass in another. These contradictory results suggest that factors not examined in this study have a confounding influence on decoration plasticity. As decorations attract prey as well as predators decreasing decoration investment may, in some instances, be attributable to benefits no longer outweighing the risks. Web area was altered according to feeding frequency, and mesh size altered according to feeding frequency and prey length. The number of radii in orb webs was unaffected by prey parameters. A finite amount of silk can be invested in the orb web, so spiders trade-off smaller mesh size with larger web capture area, explaining why feeding frequency influenced both web area and mesh size. Mesh size is additionally responsive to prey size via sensory cues, with spiders constructing webs suitable for catching the most common or most profitable prey.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diet-induced co-variation between architectural and physicochemical plasticity in an extended phenotype.

The adaptive benefits of extended phenotypic plasticity are imprecisely defined due to a paucity of experiments examining traits that are manipulable and measurable across environments. Spider webs are often used as models to explore the adaptive benefits of variations in extended phenotypes across environments. Nonetheless, our understanding of the adaptive nature of the plastic responses of s...

متن کامل

Functionally independent components of prey capture are architecturally constrained in spider orb webs.

Evolutionary conflict in trait performance under different ecological contexts is common, but may also arise from functional coupling between traits operating within the same context. Orb webs first intercept and then retain insects long enough to be attacked by spiders. Improving either function increases prey capture and they are largely determined by different aspects of web architecture. We...

متن کامل

Nutrient-Mediated Architectural Plasticity of a Predatory Trap

BACKGROUND Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. METHO...

متن کامل

Giant wood spider Nephila pilipes alters silk protein in response to prey variation.

Recent studies have demonstrated that orb-weaving spiders may alter web structures, foraging localities or silk output in response to prey variations. In this study we conducted field surveys and food manipulations to examine whether orb-weaving spiders may also adjust the protein of silk to prey variations. A comparison of dragline silks collected from nine giant wood spider Nephila pilipes po...

متن کامل

Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe inva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 18  شماره 

صفحات  -

تاریخ انتشار 2010